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AbstractAbstractAbstractAbstract    
    
Low-temperature and weak-light conditions have major effects on the growth and flower quality of 

horticultural plants. A greenhouse pot experiment was performed to investigate the effects of arbuscular 
mycorrhizal fungi (AMF) (Funneliformis mosseae and Glomus versiforme) on the growth, photosynthesis, and 

chlorophyll fluorescence parameters of snapdragon (Antirrhinum majus L.) under low-temperature and weak-

light stress. The growth and biomass of snapdragon were higher following inoculation with F. mosseae and G. 

versiforme compared with control plants. The percentage of mycorrhizal colonization and root activity were 

high in A. majus plants with AMF. AMF inoculation enhanced the net photosynthetic rate, transpiration rate, 

stomatal conductance, and water use efficiency of plants under low-temperature and weak-light conditions. 
Furthermore, the chlorophyll content, potential activity of photosystem II (PSII), effective photochemistry 
quantum efficiency of PSII, actual photochemical quantum efficiency of PSII, and photochemical quenching 
coefficient were higher in AMF-inoculated plants than in uninoculated plants. The application of AMF 
reduced the intercellular CO2 concentration and non-photochemical quenching coefficient. Thus, snapdragon 
plants treated with F. mosseae and G. versiforme are more resistant to low-temperature and weak-light stress 

than untreated plants. 
    
Keywords:Keywords:Keywords:Keywords: arbuscular mycorrhizal fungi; Antirrhinum majus L.; chlorophyll fluorescence; low 

temperature and/or weak light; photosynthesis  
 
 
IntroductionIntroductionIntroductionIntroduction    
 
Low-temperature and weak-light conditions affect the growth and flower quality of horticultural plants, 

and plants are often exposed to these abiotic stresses in facility cultivation systems. Low-temperature and weak-
light conditions can inhibit the growth and development of plants and even lead to death (Sun et al., 2015). 

Chlorophyll parameters play important roles in determining the resistance of plants to low-temperature and 
weak-light stress (Anamika et al., 2014). Photosynthesis is highly sensitive to low-temperature and weak-light 

stress (Yu et al., 2015); chlorophyll fluorescence parameters provide an objective reflection of the effects of 
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external factors on photosynthesis (Murchie and Lawson, 2013). The net photosynthetic rate (Pn) and 
maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm) of chrysanthemum decrease under low-
temperature and weak-light conditions, and the intercellular CO2 concentration (Ci) increases, which inhibits 
the growth and development of chrysanthemum and reduces its ornamental quality (Liang et al., 2010). 

Similarly, the photosynthetic capacity of Armeniaca vulgaris is greatly reduced under low-temperature and low-

light stress, and the functions of photosystem I (PSI) and PSII are disrupted (Sun et al., 2015). Other studies 

have shown that the Pn, stomatal conductance (Gs), carboxylation efficiency, Fv/Fm, and actual 
photochemical efficiency of PSII of grafted Capsicum frutescens seedlings decrease significantly after low-

temperature and weak-light stress treatment, and Ci first decreases and then increases (Zhang and Shang, 
2010).  

Arbuscular mycorrhizal fungi (AMF) are the most common symbiotic fungi (Harley and Smith, 2008), 
and they obtain nutrients and water by colonizing host plant roots; AMF can promote the growth of their 
plant symbionts (Zhang et al., 2019). Some studies have shown that AMF can enhance the adaptability of 

plants to adverse environmental stresses (Chen et al., 2013; Fakhech et al., 2019; Fokom et al., 2019; Wahid et 

al., 2019; Ye et al., 2019). Glomus etunicatum can alleviate low-temperature damage in maize plants by 

increasing their leaf chlorophyll content, photosynthesis, and chlorophyll fluorescence, which promotes host 
plant growth (Zhu et al., 2010). The plant height, leaf number, leaf area, and ground weight of Santalum album 

are significantly higher when they are inoculated with Glomus fasciculatum and a mixture of Glomus 

intraradices and G. fasciculatume under low light conditions than when no AMF are inoculated (Binu et al., 

2015). A previous study has shown that inoculation with Funneliformis mosseae significantly increases the fresh 

weight and dry weight of cucumber seedlings, and this results in increases in their cold resistance (Chen et al., 

2013).  
Snapdragon (Antirrhinum majus L.) is a perennial herbal flower in the family Scrophulariaceae; it has 

been widely used for its rich color and unique appearance (Fan and Yan, 2015). Snapdragon originated in the 
Mediterranean coastal region, and it grows optimally between 15 and 16 °C. It is susceptible to freezing damage 
when temperatures are below 5 °C, and such temperatures can lead to blossom failure or even death (Inaba and 
Ohshiro, 2010). Snapdragon has long been cultivated under low-temperature and weak-light conditions during 
the winter months in northern China. Artificial measures such as heat and light supplementation are needed 
to promote the growth of snapdragons at high latitudes. Few studies have examined the physiological 
mechanisms underlying the adaptability of snapdragon with AMF to low-temperature and weak-light stress. 
The aim of this study was to explore approaches that could be used to mitigate the damage caused by low-
temperature and weak-light stress on snapdragon plants via biological means to promote their growth and 
development. Thus, we examined the effects of AMF (F. mosseae + Glomus versiforme) inoculation on the 

growth, chlorophyll content, photosynthetic gas exchange parameters, and chlorophyll fluorescence 
parameters of snapdragon under low-temperature and weak-light conditions by measuring eco-physiological 
and morphometric variables. The results of our study provide new insights into the physiological mechanism 
underlying the resistance of snapdragons with AMF to low-temperature and low-light stress. 

 
 

Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Plants and AMF material  

Snapdragon seeds were purchased from Takii Seed Co., Ltd. Qingdao Branch, China (36.269304°N, 
120.43027°E). They were surface sterilized by soaking in 10% (v/v) solution of hydrogen peroxide for 10 min 
and rinsed with sterile distilled water. The soil was collected from the campus of Qingdao Agricultural 
University; it was then sieved and mixed with turf (1:1). The mixture was sterilized by high-pressure steam at 
120 °C for 2 h to eliminate the effect of indigenous AMF.  
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The AMF inoculated in this study were F. mosseae and G. versiforme, and the inoculum was provided by 

the Institute of Mycorrhizal Biotechnology of Qingdao Agricultural University. After propagation for four 
months using Trifolium repens as a host plant, soil containing fungal spores, hyphae, and the infected root 

fragments of the host plant was used as inoculum.  
 
Experimental design and treatments 

The experiment was carried out in the controlled climate laboratory of Qingdao Agricultural University. 
Various light intensity and temperature conditions were tested, including low temperature and weak light 
intensity (4 °C, 100 μmol·m-2·s-1, LW), low temperature and normal light intensity (4 °C, 500 μmol·m-2·s-1, LN), 
normal temperature and weak light intensity (20 °C, 100 μmol·m-2·s-1, NW), and normal temperature and 
normal light intensity (20 °C, 500 μmol·m-2·s-1, NN). Under each light intensity and temperature condition, 
two treatments, one in which plants were inoculated with AMF (+AMF) and one in which plants were not 
inoculated with AMF (CK), were conducted. Thus, there were a total of eight treatments, with five replicates 
for each treatment. 

Surface-sterilized seeds were sown in plastic pots (24 cm in diameter×18 cm high) containing 2 kg of 
air-dried substrates. After germination, the seedlings were thinned to one per pot. In the AMF treatment, a 
total of 30 g of soil containing F. mosseae and G. versiforme was added to the culture matrix, and the AMF were 

applied at an inoculation potential of 12,000 [IP=N×W×K+S, where IP is the inoculation potential, N is the 
number of vesicles contained in the root segment per unit length, W is the root weight (g), K is the root length 
per unit mass (cm), and S is the number of spores in the inoculum per unit mass or volume] (Liu and Chen, 
2007); the CK was inoculated with the same amount of sterile inoculants.  

Pots were cultured in a controlled climate chamber with a 12-h photoperiod at 20 °C and humidity of 
65%. Half of the Hoagland solution was supplied once a week, and the pots were weighed every 3 days to adjust 
the water content. After 75 days of cultivation, seedlings of AMF-inoculated and uninoculated snapdragons 
were randomly subjected to LW, LN, NW, and NN conditions; after 10 days of treatment, each index was 
determined, and this process was repeated five times. 

 

Mycorrhizal colonization rate and root activity 

The Trypan blue staining method was used to measure mycorrhizal colonization after dyeing (Biermann 
and Linderman 1981); the mycorrhizal colonization rate was measured under a microscope using the modified 
cross-bonded method with the following formula: C = Rc/Rt × 100%, where C (%) is the colonization rate, 
Rc is the total number of root segments colonized, and Rt is the total number of root segments. The methods 
used to determine the arbuscule rate, as well as the numbers of entry points and vesicles, were based on those 
described in Liu and Chen (2007). Root activity was measured using the triphenyl tetrazolium chloride (TTC) 
method (Wang et al., 2018). Briefly, 0.5 g of fresh roots were immersed in 10 mL of an equally mixed solution 

of 0.4% TTC and phosphate buffer; it was then kept in the dark at 37 °C for 2 h. Subsequently, 2 mL of 1 
mol/L H2SO4 was added to stop the reaction with the roots. The roots were dried with filter paper and then 
extracted with ethyl acetate. The red extractant was transferred to the volumetric flask, and a volume of 10 mL 
was achieved by adding ethyl acetate. The absorbance of the extract at 485 nm was recorded. Root activity was 
expressed as TTC reduction intensity: root activity = amount of TTC reduction (μg)/fresh root weight (g) × 
time (h). 

 
Growth and physiological indexes 

Plant height was measured using a graduated meter. Basal diameter, leaf width, and leaf length were 
measured using digital calipers. All plants were harvested in the morning 30 d after sowing; they were first 
washed with tap water, followed by distilled water. The aboveground and underground parts of the seedlings 
were separated, and the fresh weight was determined per pot. The samples were oven-dried at 105 °C for 15 
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min and then at 80 °C to a constant weight; the dry weight was recorded. The total chlorophyll content was 
measured using a hand-held chlorophyll meter (SPAD-502, Konica Minolta Co., Tokyo, Japan). 

The Pn, Gs, Ci, and transpiration rate (Tr) of leaves were determined during 8:30–10:30 on fully 
expanded first blades using a portable photosynthetic CIRAS-3 instrument (PP Systems, USA) 30 d after 
sowing. Measurements were repeated three times for each blade for three blades per pot, and the averages were 
recorded. The water use efficiency (WUE) was calculated as the ratio of Pn/Gs. Chlorophyll fluorescence 
parameters were measured using Pocket PEA (Hansatech Instruments Ltd., UK). Seedlings were kept in the 
dark for 30 min before measuring the fluorescence of blades; the blades used for fluorescence measurements 
were the same ones used for measurements of photosynthetic indices. The minimal fluorescence level (F0), 
maximal fluorescence level (Fm), Fv/Fm, potential activity of PSII (Fv/F0), effective photochemistry quantum 
efficiency of PSII (Fv’/Fm’), actual photochemical quantum efficiency of PSII (φPSII), photochemical 
quenching coefficient (qP), and non-photochemical quenching coefficient (NPQ) were also determined. 

 
Data analysis and statistics  

All statistical analyses were conducted using Excel 2010 and SPSS16.0. Analysis of variance (ANOVA) 
was used to evaluate the effects of treatments on variables (p < 0.05). Significant differences between individual 
means were determined using Duncan’s multiple range tests (p < 0.05). Sampling analyses were repeated at 
least three times under the same conditions to minimize experimental error. Data were shown as mean ± 
standard deviation of three replicates. 

 
    
ResultsResultsResultsResults    
 
AMF colonization and root activity  

Root colonization by AMF was significantly affected by LW, LN, and NW treatments, as sharp 
decreases were observed in all indicators of colonization (Table 1); the interactions between these indicators 
were significant (Table 2). NN+AMF snapdragon roots were largely colonized by AMF, as indicated by the 
high percentage of mycorrhizal colonization and arbuscule rate (Table 1). Microscopic observations confirmed 
that the numbers of entry points and vesicles were high in all AMF-inoculated plants (Table 1).  

The root activity of snapdragon was low in the LW, LN, and NW treatments. The root activity of 
snapdragon was higher in the LW, LN, and NW treatments under inoculation with AMF than in the control 
treatment, and root activity was 17.4%, 18.6%, 19.2%, and 28.5% higher in snapdragon in the LW, LN, and 
NW, and NN treatments, respectively, under AMF inoculation than in these same treatments without AMF 
inoculation (Figure 1). 
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Table 1. Table 1. Table 1. Table 1. The effect of low temperature, weak light, and AMF colonization on the root colonization of 

Antirrhinum majus L 

Treatments Treatments Treatments Treatments     
Mycorrhizal Mycorrhizal Mycorrhizal Mycorrhizal 

colonization (%)colonization (%)colonization (%)colonization (%)    
Arbuscule rate Arbuscule rate Arbuscule rate Arbuscule rate     

(%)(%)(%)(%)    
Numbers of entry Numbers of entry Numbers of entry Numbers of entry 

point rootpoint rootpoint rootpoint root    (cm)(cm)(cm)(cm)    
VesiclesVesiclesVesiclesVesicles    rootrootrootroot    

(cm)(cm)(cm)(cm)    

LW+AMF 50.2 ± 0.1 c 29.0 ± 1.1 b 8.3 ± 0.7 b 14.0 ± 0.6 b 

LN+AMF 57.6 ± 0.7 b 31.3 ± 0.9 ab 9.3 ± 1.2 ab 15.3 ± 0.3 ab 

NW+AMF 54.4 ± 0.6 bc 32.3 ± 0.8 ab 9.6 ± 0.3 ab 15.7 ± 0.3 ab 

NN+AMF 66.6 ± 0.9 a 34.0 ± 1.7 a 11.0 ± 0.6 a 16.7 ± 0.3 a 

LW - - - - 

LN - - - - 

NW - - - - 

NN - - - - 

Test of significance 

low temperature * ** * * 

weak light ** ** * * 

low temperature 
× weak light 

*** *** *** *** 

Note: Data are mean ± standard deviation of three replicates. Different lowercase letters (a, b, c, and d) indicate 
significant differences. The threshold for statistical significance was p < 0.05 according to Duncan’s multiple range 
test. LW: low temperature and weak light intensity (4 °C, 100 μmol·m-2·s-1); LN: low temperature and normal light 
intensity (4 °C, 500 μmol·m-2·s-1); NW: normal temperature and weak light intensity (20 °C, 100 μmol·m-2·s-1); NN: 

normal temperature and normal light intensity (20 °C, 500 μmol·m-2·s-1); AMF: snapdragon inoculated with F. 

mosseae and G. versiforme. “NS” indicates that the differences are not significant; * p < 0.05, **p < 0.01, and ***p < 

0.001. 

 

 
Figure 1Figure 1Figure 1Figure 1....    Effects of AMF on root activity of snapdragon under different treatments 
Means followed by different letters in the same group are significantly different at p< 0.05, according to Duncan’s 
multiple range test. 

 
Plant growth  

LW, LN, and NW treatment inhibited the growth and development of snapdragon, and inoculation 
with AMF alleviated the inhibitory effects of low temperature and weak light on snapdragon growth. The plant 
height, stem diameter, and dry weight were higher in NN+AMF plants than in plants in the other treatments, 
especially LW+AMF and LW+CK plants (Table 2). The leaf width and leaf length were greater in NW+AMF 
plants than in plants in the other treatments. The plant height, stem diameter, and dry weight were lowest in 
the LW+CK plants. Leaf width and leaf length were lowest in LN+CK plants (Table 2). AMF inoculation 
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significantly promoted the growth of snapdragon, and interactions between LW, LN, and NW were significant 
(Table 2).  

 
Table 2. Table 2. Table 2. Table 2. Morphometric parameters of Antirrhinum majus L. under different treatments 

Treatments Treatments Treatments Treatments     
Plant heightPlant heightPlant heightPlant height    

(cm)(cm)(cm)(cm)    
SSSStem diametertem diametertem diametertem diameter    

(mm)(mm)(mm)(mm)    
Leaf width Leaf width Leaf width Leaf width 

(cm)(cm)(cm)(cm)    
Leaf length Leaf length Leaf length Leaf length 

(cm)(cm)(cm)(cm)    

Dry weight Dry weight Dry weight Dry weight (g)(g)(g)(g)    

AbovegroundAbovegroundAbovegroundAboveground    
partpartpartpart    

Underground Underground Underground Underground 
partpartpartpart    

LW+AMF 15.88 ± 0.21 abcd 5.13 ± 0.04 abc 2.12 ± 0.03 ab 6.25 ± 0.09 ab 3.14 ± 0.06 cd 0.48 ± 0.01 bcd 

LN+AMF 16.24 ± 0.13 ab 5.22 ± 0.07 ab 2.07 ± 0.07 ab 6.08 ± 0.03 bcd 3.61 ± 0.16 ab 0.53 ± 0.01 ab 

NW+AMF 16.33 ± 0.36 ab 5.18 ± 0.03 abc 2.22 ± 0.06 a 6.39 ± 0.19 a 3.28 ± 0.16 bc 0.51 ± 0.01 bc 

NN+AMF 16.37 ± 0.31 a 5.31 ± 0.09 a 2.09 ± 0.03 ab 6.23 ± 0.05 abc 3.73 ± 0.11 a 0.55 ± 0.01 a 

LW  15.15 ± 0.19 d 4.78 ± 0.12 d 1.83 ± 0.03 cd 6.01 ± 0.06 cde 2.86 ± 0.07 d 0.37 ± 0.02 e 

LN  15.36 ± 0.37 cd 4.85 ± 0.12 d 1.74 ± 0.05 d 5.81 ± 0.04 e 3.23 ± 0.14 bcd 0.45 ± 0.01 d 

NW  15.49 ± 0.19 bcd 4.94 ± 0.12 cd 1.99 ± 0.04 bc 
6.17 ± 0.04 

abcd 
3.17 ± 0.15 cd 0.47 ± 0.01 d 

NN  16.06 ± 0.17 abc 5.03 ± 0.07bcd 1.77 ± 0.09 d 5.99 ± 0.06 de 3.31 ± 0.15 bc 0.47 ± 0.03 cd 

Test of significance 

AMF * ** ** ** ** *** 

low 
temperature 

** * NS NS * NS 

weak light ** * ** ** ** NS 

low 
temperature × 
weak light 

*** ** ** ** ** * 

AMF × low 

temperature 
NS * ** ** * ** 

AMF × weak 
light 

NS * ** ** NS * 

AMF × low 
temperature × 
weak light 

NS NS ** ** * * 

 
Gas exchange  

There was a significant effect of AMF inoculation on the total chlorophyll content, Pn, Tr, Gs, WUE, 
and Ci of snapdragon (p < 0.05, Table 3). The LW, LN, and NW treatments had a significant negative effect 
on the Pn, Tr, Gs, and WUE of both AMF and CK plants (Figure 2A, B, C, D); Ci was significantly higher in 
the LW, LN, and NW treatments than in the NN treatment (Figure 2e). In the LW treatment, AMF 
significantly increased the Pn, Tr, Gs, and WUE by 32.7%, 42.1%, 72.4%, and 67.8%, respectively, and 
decreased Ci by 15.2%. In the LN treatment, AMF significantly increased the Pn, Tr, Gs, and WUE by 31.1%, 
32.3%, 26.6%, and 46.9%, respectively, and decreased Ci by 12.6%. In the NW treatment, AMF significantly 
increased the Pn, Tr, Gs, and WUE by 29.2%, 38.8%, 28%, and 41.3%, respectively, and decreased Ci by 15.2% 
(Figure 2, Table 3). 
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Figure 2Figure 2Figure 2Figure 2....    Effects of AMF on A: Pn, B: Tr, C: Gs, D: WUE, and E: Ci under different treatments 
Bars topped by different letters indicate that values differed significantly at p< 0.05, according to Duncan’s multiple 
range test. 

 
Chlorophyll fluorescence 

The total chlorophyll content and NPQ of snapdragon leaves were significantly affected by AMF 
inoculation (p < 0.05, Table 3). The total chlorophyll content was higher in AMF-inoculated plants than in 
control plants (Figure 3, Table 3).  

 
Table 3. Table 3. Table 3. Table 3. Results of three-way ANOVA of the effects of low temperature, weak light, arbuscular 
mycorrhizal (AM) fungi, and their interactions on the root activity, Pn, Tr, Gs, Ci, WUE, total chlorophyll 
content, Fv/Fm, Fv/F0, Fv’/Fm’, φPSII, qP, and NPQ 

Source of Source of Source of Source of 
variationvariationvariationvariation    

Root Root Root Root 
activityactivityactivityactivity    

PnPnPnPn    TrTrTrTr    GsGsGsGs    CiCiCiCi    WUEWUEWUEWUE    
TTTTotal otal otal otal 

chlorophyllchlorophyllchlorophyllchlorophyll    
FFFFvvvv/F/F/F/Fmmmm    FFFFvvvv/F/F/F/F0000    FFFFv’v’v’v’/F/F/F/Fm’m’m’m’    φφφφPSIIPSIIPSIIPSII    qPqPqPqP    NPQNPQNPQNPQ    

AMF * * * * * * * NS NS NS NS NS * 

low temperature * * ** * ** ** NS * * * *** ** * 

weak light ** *** *** ** *** ** ** ** ** ** *** ** ** 

low temperature 
× weak light 

*** *** *** *** *** *** *** *** *** *** *** *** *** 

AMF × low 
temperature 

NS NS NS NS * * NS NS NS NS ** NS NS 

AMF × weak 
light 

* * * * ** * NS * * * *** * NS 

AMF× low 
temperature × 
weak light 

** ** ** ** *** ** * ** ** ** *** ** NS 
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Figure 3Figure 3Figure 3Figure 3....    Effects of AMF on A: chlorophyll content, B: Fv/Fm, C: Fv/F0, D: Fv’/Fm’, and E: φPSII, F: qP and 
G: NPQ under different treatments 
Bars topped by different letters indicate that values differed significantly at p< 0.05, according to Duncan’s multiple 
range test. 

 
LW, LN, and NW treatments had a significant negative effect on the total chlorophyll, Fv/Fm, Fv/Fo, 

Fv’/Fm’, φPSII, and qP of both AMF-inoculated and uninoculated plants compared with plants in the NN 
treatment, and NPQ was significantly higher in plants in the LW, LN, and NW treatments than in the NN 
treatment (Figure 3A, B, C, D, E, F, and G). In the LW treatment, AMF significantly increased the mean 
content of total chlorophyll, Fv/Fm, Fv/F0, Fv’/Fm’, φPSII, and qP by 35.7%, 12.8%, 13.9%, 21.1%, 25.9%, and 
25%, respectively, and decreased NPQ by 25.1%. In the LN treatment, AMF significantly increased the mean 
content of total chlorophyll, Fv/Fm, Fv/F0, Fv’/Fm’, φPSII, and qP by 12.6%, 1.7%, 1.9%, 15.6%, 4.2%, and 26.2%, 
respectively, and decreased NPQ by 33.8%. In the NW treatment, AMF significantly increased the mean 
content of total chlorophyll, Fv/Fm, Fv/F0, Fv’/Fm’, φPSII, and qP by 21.8%, 2.5%, 23.5%, 26.9%, 17%, and 
14.6%, respectively, and decreased NPQ by 30.5% (Figure 3, Table 3). 

 
 
DiscussionDiscussionDiscussionDiscussion    
 
In this experiment, low-temperature and weak-light stress inhibited the growth of snapdragon, and LW 

treatment had a more substantial negative effect on snapdragon than the LN and NW treatment. We found 
that mycorrhizal symbiosis had a positive effect on the growth and biomass of snapdragon seedlings in the LW, 
LN, and NW treatments; this might stem from interactions with AMF, which can enhance plant root activity 
and promote plant growth and development (Mathur et al., 2018; Pavithra and Yapa, 2018). A previous study 

has shown that AMF obtains photosynthates by infecting host plant root systems, which enhances the 
absorption of mineral nutrients by host plants and reduces the effects of abiotic stress (Porcel et al., 2012; 

Dhanushi and Neelamanie, 2018; Pollastri et al., 2018). Our findings indicate that AMF symbiosis plays a key 

role in alleviating the deleterious effects of low-temperature and weak-light stress on snapdragon.  
AMF colonization was lower in LW+AMF, LN+AMF, and NW+AMF plants than in NN+AMF 

plants. Our findings are consistent with the results of previous studies showing that root colonization decreases 
in Chrysanthemum morifolium in response to cadmium stress (Wang et al., 2018) and salt stress (Lin et al., 

2018), indicating that the LW and NW treatments both affected the activity of photosynthesis-related 
enzymes and that LN and NW reduced the light energy absorption of snapdragon. LW, LN, and NW inhibited 
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the Pn, which affects the supply of carbon to AMF from plants, and this leads to a reduction in the colonization 
rate of AMF. These findings indicate that the mycelium elongation and branching of AMF are inhibited under 
abiotic stress (Gao et al., 1998).  

Photosynthesis is one of the most important indicators of physiological sensitivity to environmental 
stress (Chaves et al., 2009). Previous studies have shown that Pn is a good indicator of the degree of 

physiological sensitivity to abiotic stress (Xu et al., 2008). Previous research has shown that decreases in Pn 

indicate the magnitude of plant stress (Xu et al., 2016, Zou et al., 2015), which is consistent with our finding 

that the Pn of snapdragon is markedly lower in the LW, LN, and NW treatments than in the NN treatment. 
The reduction in Pn in the LW, LN, and NW treatments was not only related to the loss of photosynthetic 
capacity but also to decreases in Gs (Figure 2 A, C). The Gs of snapdragon in our study decreased in the LW, 
LN, and NW treatments. AmayaCarpio et al. (2009) found that the Pn and photosynthetic capacity of 

buttercup were significantly higher when plants were inoculated with Glomus intraradices than when they were 

not inoculated with AMF. Inoculating snapdragon with AMF increased the Gs, Tr, and Pn of leaves, which 
promoted the accumulation of assimilates. In the AMF treatment, increases in WUE were pronounced in the 
presence of AMF. Increases in WUE allow plants to tolerate conditions in the LW, LN, and NW treatments 
(Figure 2 D), and increases in Gs in snapdragon leaves might be related to changes in the concentrations of 
endogenous hormones (Cosme and Wurst, 2013). AMF not only improve plant growth but also promote plant 
hormone-mediated defense responses (He et al., 2017). Our findings indicate that LN and NW conditions 

reduced the Gs of snapdragon leaves, which led to decreases in CO2 absorption and Pn. The Tr of plants 
decreased under LW conditions. AM symbiosis enhances the gas exchange capacity, which promotes 
photosynthesis, reduces stomatal resistance, and enhances CO2 assimilation and transpiration flux (Mathur et 

al., 2018). AM symbiosis also alleviates declines in the transpiration rate and promotes the intake of H2O, 

which maintains the Pn high. 
The chlorophyll concentration is a key factor affecting plant photosynthesis (Parvin et al., 2020). 

Increases in the chlorophyll content due to mycorrhizal colonization in the LW, LN, and NW treatments have 
also been observed in previous studies (Mathur, Sharma and Jajoo, 2018). The chlorophyll content was higher 
in AMF plants than in CK plants in our experiment. Chlorophyll fluorescence parameters are strong predictors 
of the photosynthetic ability and energy conversion efficiency of PSII (Chen et al., 2017). Plants maintain the 

balance between photosynthetic electron transfer and carbon metabolism through non-photochemical 
processes and improve the electron transfer activity of PSII (Roháček, 2002). Here, we found large differences 
in Fv/Fm, Fv/Fo, Fv’/Fm’, φPSII, qP, and NPQ between CK plants and AMF-inoculated plants. In the LW, 
LN, and NW treatments, decreases in Fv/Fm, Fv/Fo, Fv’/Fm’, φPSII, and qP were accompanied by increases 
in NPQ, and increases in NPQ are thought to be a mechanism of energy dissipation that protects the 
photosynthetic apparatus against excess light (Demmig-Adams and Adams Iii 1992). Inoculation with AMF 
can increase the photochemical activity of the PSII reaction center, enhance the heat dissipation rate, reduce 
damage to the PSII photosynthetic center induced by abiotic stress, and decrease the inhibition of 
photosynthetic electron transfer (Borkowska, 2006). Specifically, the LW, LN, and NW treatments inhibited 
the synthesis of chlorophyll and destroyed the structure of chloroplasts. AMF inoculation alleviated the 
degradation of chlorophyll and the disintegration of chloroplasts to some extent, which helped enhance the 
photosynthetic rate and chlorophyll fluorescence parameters. 

 
    
ConclusionsConclusionsConclusionsConclusions    
 
In conclusion, low-temperature stress and weak-light stress result in decreases in root activity and root 

biomass accumulation, as well as declines in the chlorophyll content and photosynthetic capacity of leaves. 
However, inoculation with AMF significantly increased the root activity and chlorophyll content of 
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snapdragon in the LW, LN, and NW treatments. The photosynthetic carbon assimilation capacity and 
chlorophyll fluorescence parameters of snapdragon were also increased to varying degrees. Therefore, 
inoculation of snapdragon with AMF can enhance their tolerance to low-temperature and weak-light stress via 
changes in plant morphology and photosynthetic functions. 
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